) APlsec

Best Practices
for API Security

Dan Barahona

dan@apisec.ai
apisec.ai


mailto:dan@apisec.ai
http://apisec.ai

§) APlsec

A decade ago, securing a company’s web interfaces
was a straightforward affair, and website
vulnerabilities were well understood. Periodic
scanning and manual penetration testing provided
some assurance that a company’s web and mobile
applications were resistant to hacking. Since then,
the world of web applications has changed radically,
with Application Programming Interfaces, or APIs,
transforming how organizations build, manage, and
scale their web and mobile services.

Hackers have taken notice of the prevalence of
APIs, and the existence of serious vulnerabilities
within these interfaces. Daily, new API-based
breaches occur with hackers taking advantage of
undiscovered loopholes in API logic, allowing
malicious access to sensitive data. This paper
examines the challenges and best practices for
securing APIs.

API Security Best Practices for FedRAMP Compliance 1



§) APlsec

Adoption of APIs

Around 2010, most IT security professionals viewed the world as divided between
their internal network and the dangerous world beyond. Providing an API for outsiders
to make use of internal network services was uncommon. Two events occurred that
changed the landscape. With soaring acceptance and popularity of Amazon Web
Services and other competing cloud offerings, the mentality of maintaining strong
boundaries between the inside and outside world fell from favor.

RESTful APIs became widely adopted, using HTTP verbs and endpoints that resembled
the organization of web-based sites. Developers and IT shops found an easy familiarity
with a tech that has massive potential. By 2019, Akamai, the leading content delivery
network, reported that 83% of all internet traffic was now generated by APIs.

83%

of all internet traffic
is generated by APIs

Source: Akamai

API Security Best Practices for FefdRAMP Compliance 2


https://www.akamai.com/tw/zh/multimedia/documents/state-of-the-internet/state-of-the-internet-security-retail-attacks-and-api-traffic-report-2019.pdf

§) APlsec

Emergence of APIs as a Security Risk

Predictably, as APIs gained traction as an ideal way to build applications and expose
data and functionality with users and partners, attackers also discovered malicious
opportunities in targeting APIs. In fact, APIs are considered by many to be among the
most serious security threats organizations face, as APIs provide direct lenses into
highly sensitive data and functionality.

920% 90% 2022

of web app attack of breaches APIs will become
surface area targeted “most frequent
are APIs web applications attack vector”
Gartner. verizon’ Gartner.

The problem is that web applications remain a primary target for breaches (90%
according to Verizon) and that APIs now make up 90% of the web app attack surface
area. This led Gartner to forecast that by 2022, APIs will become the “most frequent
attack vector”.



§) APlsec

OWASP API Security Top 10

The Open Web Application Security Project (OWASP) is a U.S.-based non-profit
dedicated to web security, application security, and vulnerability assessment. The
OWASP Top Ten Web Application Security Risks is highly regarded as the go-to
standard for testing and securing web applications. In response to the escalating
breaches of APIs, the OWASP organization released a separate guidance in 2019 - the
API Security Top 10.

Of OWASP’s top ten API vulnerabilities only one involves a classic security attack
vector, number eight, which covers various SQL injection vulnerabilities -
acknowledging the unique challenges of securing API-based applications. Four of the
top five vulnerabilities all involve logical errors in the software stack that are unique to
each organization and each API, and are difficult to identify with traditional testing
methodologies.

More importantly, the API security guidance recognizes a fundamental difference in
how APIs are breached, typically via authorization and authentication, not classical
web application security issues such as injection attacks, cross site scripting, buffer
overflows, etc.

In fact, the common thread among most API breaches is that these are not classic
security attacks and vulnerabilities. These breaches are the result of business logic
flaws and loopholes in the API itself. Developers are taught to never trust user data,
but APIs allow attackers to modify request properties in unexpected ways that are
difficult to test for given the huge number of possible attack scenarios. In the rush to
push more code, functionality and fixes into production, developers often introduce
unintended access vulnerabilities as well. Here are some specific examples:


https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-api-security/

§) APlsec

OWASP API Security #1: Broken Object Level

Authorization

This represents the single most
common, and often most
serious, vulnerability for APIs.
Broken Object Level
Authorization vulnerabilities
relate to what restrictions exist
in the API logic to prevent User
A from accessing User B’s data
- or any unauthorized data. In
traditional web and mobile
applications, the interface itself
controls what data is presented
and what the user is permitted
to see. With APIs no such
graphical interface exists and
the API will return all the
information that the function
call allows.

API Security Best Practices for FefdRAMP Compliance

~ UNITED STATES
P POSTAL SERVICE

Real-world example

The US Postal Service’s “Informed
Delivery” API allowed an authorized
user to access, via API, all their
shipments, delivery status, account
information and more. While this API
required users to be properly
authenticated, it did not include
controls over which customer’s data
could be accessed. With minimal
changes in API requests, a user could
access any other user’s shipment
details and account information. In this
way data one user was able to harvest
sensitive information on 60 million
users.

o1



§) APlsec

OWASP API Security #2: Broken Authentication

API Authentication refers to the
implementation of strong,
effective, properly configured
authentication to access data.
Inadequate, or “broken,”
authentication may be as basic
as lack of any authentication at
the API layer, or authentication
that employs weak password,
policies, lockout, etc. In other
cases it can be a lack of token
encryption, passing tokens in
URL strings or allowing
credential stuffing tactics to
proceed.

API Security Best Practices for FefdRAMP Compliance

Fizikal

Real-world example

A hacker discovered they could request
password resets for the fitness
platform, Fizikal, via API by supplying a
phone number. Valid phone numbers
would return a different response, so
they simply iterated through all possible
phone numbers to identify all valid
accounts. The reset code was a simple
4-digit code, which could easily be
brute-forced, giving the attacker access
to any account.



§) APlsec

OWASP API Security #3: Excessive Data Exposure

This vulnerability focuses on
APIs that return more data,
fields and information than the
specific use requires. Many web
and mobile apps rely on API
calls that return more data than
necessary, and then present
only what’s needed in the user
interface. This approach relies
on data controls in the UI, but
exposes unfiltered results in
direct API calls.

API Security Best Practices for FefdRAMP Compliance

venmo

Real-world example

The electronic payments platform,
Venmo, employed an API used by the
corporate homepage to present a list of
real-time transactions. A hacker
discovered the API and was able to call
the function directly, with no
authentication required (a violation of
#2 - Broken Authentication). However,
not only did the API allow
unauthenticated users, it also returned
full transaction details. The hacker was
able harvest over 200 million
transactions including details of sender
and recipient, goods and services
description, and total amount.



§) APlsec

OWASP API Security #4: Lack of Resources & Rate

Limiting

In light of the
machine-to-machine nature of
APIs, these resources are
especially vulnerable to highly
automated, high volume denial
of service attacks. These
attacks can come from many
different IPs, target different
API functionality and data.
Without restrictions on
frequency and volume of API
requests attackers can
brute-force password resets,
harvest user information,
Impact performance, and
download massive quantities of
proprietary information.

API Security Best Practices for FefdRAMP Compliance

Instagrom,

Real-world example

Instagram allowed password resets by
sending a 6 digit code to the account
owner’s device, giving the user 10
minutes to provide the correct code.
Instagram also limited code
submissions to no more than 200
attempts per IP address. However,
there was no restriction on the number
of attempts per user account. A hacker
discovered the API for submitting
security codes and setup a farm of
servers on AWS, each with a different IP
address, allowing the hacker to run
through all 1 million possible 6 digit
codes in less than 10 minutes and take
over any account of their choosing.



§) APlsec

OWASP API Security #5: Broken Function Level

Assignment

Broken Function Level
Assignment refers to what
functional capabilities and API
allows users to access and
execute. Every API function, or
endpoint, generally supports a
range of methods - including
PUT, POST, GET, DELETE and
others. Organizations must
carefully consider which
specific endpoints and methods
need to be enabled for users
and third parties. For example,
an API might allow a user to
GET their current billing
statement. It should not allow
the user to DELETE the
statement or PUT the balance
to zero.

API Security Best Practices for FefdRAMP Compliance

Real-world example

The popular dating app, Bumble,
enforced significant user access and
functionality restrictions within their
mobile and web Uls. However, those
UIs use a suite of APIs to interact with
backend systems - these APIs had far
fewer controls and restrictions. One
user discovered he could not only query
APIs to pull information on every other
user on the platform - but the API also
permitted him to change his account
settings and permissions. He could
even turn on all premium features
without paying, and use them without
volume restrictions.



§) APlsec

Approaches to API Security

The OWASP organization recognized the fundamental differences in security risk for
APIs versus web and mobile apps. Similarly, the widely used tools and techniques used
to secure web and mobile apps do not offer the same protection for APIs. New
approaches are required for securing APIs - these approaches generally fall into three
categories:

Static Code Security Application
Analysis Testing Firewall

1. Static Code Analysis: building secure APIs during development
2. Security Testing: security and vulnerability testing
3. Application Firewall: protecting live APIs with inline/traffic solutions

Building security testing into a company’s CI/CD pipeline is a common first line of
defense. This approach focuses on the code itself, adding Static Analysis Security
Testing (SAST) and other code quality solutions to the continuous integration workflow.
There are well established vendors in this segment, and SAST can help enormously
with ensuring the quality and maintainability of a codebase and to identify common,
well-known coding issues and vulnerabilities. However, static code analysis is
incapable of identifying the types of logic flaws that lead to major API breaches and
data loss.

Operations often deploy a second line of defense by deploying Web Application
Firewalls (WAF) and API-aware traffic inspectors to the production API environments.
These firewalls analyze network traffic and employ heuristic techniques to watch for
common attack patterns. API-aware firewalls can go a step further, looking for
API-specific anomalies, such as preventing strings from being passed to an API that
should only receive integers. This is a capability that would be useful across all APIs.

API Security Best Practices for FefdRAMP Compliance 10



§) APlsec

However, such technologies would not generally be able to identify an API user that is
attempting to access data belonging to another user. This requires a level of user
visibility and session awareness that API-aware firewalls lack, despite attribution
techniques including IP addresses, packet headers, behavioral patterns, and
user-agents that are employed in web application firewalls.

The primary issues with code analysis and API firewalling is that these technologies
focus primarily on classic security-oriented vulnerabilities such as SQL injection
attacks, cross-site scripting, buffer overflows, etc. As we saw earlier, these are not the
causes of the vast majority of API breaches - these breaches are a result of the
business logic flaws that are unique to each API and cannot be detected or prevented
with standard approaches.

Lastly, companies invest in manual penetration testing by security professionals or
internal Red Teams. Pen-testing relies on humans to understand API code, craft tests
to identify vulnerabilities, execute the tests, and then interpret the results. This manual
approach is, by definition, slow (weeks, not minutes), reactive (often a once or twice a
year effort), and costly. Security vulnerabilities are only discovered after they have
reached production. Despite these drawbacks, manual pen testing approaches security
from the mindset of an adversarial attacker, adding depth in defending against security
attacks.

Meanwhile, organizations continue to operate at the speed of DevOps, with new code
pushed to production every day. As a result, defects make it into production, creating
vulnerabilities and leading to serious breaches as described earlier.

Challenges of API Security Testing

With the move towards API-driven applications and functionality, the challenge of
security testing code gets even harder. There are three main issues: coverage, scale,
and speed.



§) APlsec

Coverage

The ultimate goal of security testing is to make code less vulnerable to attack, misuse
and exploits. To achieve this testing must cover every corner of the API’s capabilities,
not just what is expected. Corey Ball, author of the upcoming book “Hacking APIs”
puts it succinctly, “You can design an API you think is ultra-secure, but if you don’t test
it, then a cybercriminal somewhere is going to do it for you.” So the testing scheme
needs to look at every API endpoint and method, and consider all the possible ways
your API can be used, not just the likely ways.

Scale

The coverage problem leads to the scale problem. How do you create test scenarios to
cover the entire range of API functionality. Consider a relatively lightweight API with,
say, 50 endpoints. Each of those endpoints can support multiple POST, GET, PUT and
DELETE methods. Quickly you’re already up to ~250 endpoint-method permutations.
And then consider the myriad API breach categories as described by the OWASP API
Security Top 10 - pushing testing requirements to thousands of unique attacks. Testing
needs to cover all these permutations and scenarios, otherwise vulnerabilities will
make it to production waiting to get discovered by someone else.

Speed

Speed in CI/CD time means seconds or minutes. When fixes and new functionality
need to move to production, testing cannot delay progress. However, given the
complexity of APIs, the breadth of scenarios to cover, testing speed is more often
measured in weeks or months.



§) APlsec

A Better Way:
Automated API Security Testing

The coverage problem is multiplied by the scale problem - how to create test scenarios
to cover the entire range of API functionality. Consider a relatively lightweight API with,
say, 50 endpoints. Each of those endpoints can support multiple POST, GET, PUT and
DELETE methods. Quickly you’re already up to 200+ endpoint-method permutations.
And then consider the myriad API breach categories

The APIsec approach to API security begins with learning the API: cataloging all
available endpoints and identifying supported methods. This approach is 100%
automated and allows critical API vulnerabilities to be addressed before a company’s
product reaches Production. This allows approach offers major advantages to static
code analysis, API firewalling, and manual pen testing:

1. Critical Vulnerability Detection - discovers vulnerabilities missed by static
analysis and firewalls, including business logic faults and access control issues.

2. Automatic Test Creation - automatically creates thousands of test sequences
with no manual effort. This frees a team from the necessity of dreaming up every
possible test scenario and hand crafting tests, potentially saving thousands of
hours of effort.

3. Complete API Coverage — creates granular tests to cover a company’s entire
API footprint, addressing all API attack breach categories. It covers all of the
nooks, crannies, edge cases, and corners that are easy to miss with manual
efforts.

4. Speed of DevSecOps — enables API testing on every nightly build or release,
without adding any delay. Testing is fast, running in minutes rather than adding
hours or days to a company’s integration and deployment workflow.


https://www.apisec.ai/

§) APlsec

5. Continuous Security — provides continuous API protection, unlike manual
pen-testing that is run monthly or at longer intervals.

6. Cost efficiency — provides far greater test coverage of manual pen-testing at
much lower cost, leveraging the efficiencies inherent in a scalable and
automated process.

After completing the vulnerability analysis, APIsec integrates results into the CI/CD
pipeline, creates trouble tickets in popular systems like Github and Jira, produces
pen-test reports suitable for submission to FedRAMP auditors and compliance officers,
and provides an easy-to-use dashboard for visualizing and managing changes to an API
over time. The dashboard allows replaying the attack to show the exact nature of the
vulnerability, and automatically calculates Common Vulnerability Scoring System
(CVSS) severity scores.

Please visit www.apisec.ai to learn more.

Dan Barahona, Head of Marketing and Business Development

Email: dan@apisec.al


http://www.apisec.ai
mailto:dan@apisec.ai

