) APlsec

Best Practices for API
Compliance & Privacy

Dan Barahona

http://apisec.ai

§) APlsec

Hackers have taken notice of the prevalence of
APIs, and the existence of serious vulnerabilities
within these interfaces. Daily, new API-based
breaches occur with hackers taking advantage of
undiscovered loopholes in API logic, allowing
malicious access to sensitive data. This paper
examines the compliance and privacy challenges
and best practices for securing APIs.

Best Practices for API Compliance & Privacy

§) APlsec

Privacy

APIs drive nearly every function online - utilized to enable everything from sending
money from a mobile app to syncing health data across providers to powering social
communities, dating sites, and credit reporting agencies.

As a result, APIs now have access to the most sensitive data and functionality within
organizations. And as we’ve seen in many, many public breaches, these APIs are often
under-secured and over-permissioned, becoming the source of significant breaches
and resulting in the loss of hundreds of millions of records. Here are a few examples:

In 2018 the US Postal Service offered an API called “Informed Visibility” that allowed
businesses to access information about packages, shipments, and mailings in real
time. While the API required users to be authorized to the service and to authenticate
to use it, there was a flaw in the API’s logic. A request to the API could be manipulated
to request information of another user, which the server would deliver, providing
access to over 60 million users’ information, including email address, account number,
street address, phone number and more.

In 2019, the money transfer site, Venmo, had over 200 million transactions harvested,
including sensitive user information. The hacker discovered an unsecured API endpoint
that was used by the company homepage to present recent transactions. The
homepage removed any sensitive information. However, the API, when called directly,
returned all the transaction details, and because the endpoint was unsecured, there
was no authentication required.

In 2020, the dating site Bumble left an open API endpoint without authentication,
allowing access to nearly 100 million users’ information. Of note, the API would also
return the physical distance to another member. By setting up three accounts with
different locations the hacker could identify the exact location of any other user.

§) APlsec

These examples highlight the potential for large scale privacy loss via APIs. It’s not
surprising Gartner predicts APIs will become the “most frequent attack vector” by
2022. Therefore, the implications of APIs regarding privacy are huge, as are the
potential financial damages from fines and lawsuits. Privacy regulations such as GDPR
in Europe, CCPA in California, HIPAA for health privacy, mandate the protection of an
individual’s private information and set significant penalties for loss. Gartner reports
that over 60 countries have enacted privacy mandates around the world.

GDPR

The European Union passed the “toughest privacy and security law in the world,”
enacting the General Data Protection Regulation (GDPR) in 2018. The law sets strict
obligations for the protection and control of privacy information, applying to any
provider that handles any such information. Further, GDPR imposes severe fines for
violations, up to 4% of total global revenue or 20 million Euros, whichever is higher.

GDPR defines 7 specific requirements for the control of personally identifiable
information (PII) - item #6 covers Integrity and Confidentiality, requiring that personal
data is "processed in a manner that ensures appropriate security of personal data,
including protection against unauthorized or unlawful processing and accidental loss,
destruction, or damage, using appropriate technical or organizational measures." The
Data Security requirements mandate “appropriate technical and organizational
measures.”

While GDPR does not specify the exact measures to be taken to secure PII, it does
mandate the protection of this information and sets significant penalties for any
failures or breaches. Below we provide details on how organizations need to approach
APIs to maintain GDPR compliance.

CCPA

In California, the State Legislature enacted a privacy regulation similar to GDPR,
becoming enforced no later than January 1, 2020. The California Consumer Privacy Act

§) APlsec

(CCPA) sets requirements on organizations that handle PII to control what data is
collected, how it’s used and secured, and the rights of individuals to control and revoke
their information. Unlike GDPR, CCPA does not mandate a specific user opt-in to collect
this information.

CCPA does not mandate any technical controls for data security, or any requirements
for APIs specifically. CCPA focuses on the core objective of ensuring PII is handled
securely. It also sets penalties for violations - ranging from $100 to $750 per violation.
With breaches often measured in millions of records, the penalties can be massive.
CCPA also provides a "private right of action that allows consumers to sue businesses
when their non-encrypted or non-redacted personal information is subject to
unauthorized access. This includes exfiltration, theft, or disclosing due to the business’
violation of its duty to implement and maintain reasonable security procedures and
practices appropriate to the nature of the information."

HIPAA

The Health Information Portability and Accountability Act of 1996 (HIPAA) was likely
the first major privacy legislation, applying specifically to the protection of
health-related personal information. The regulation includes both a HIPAA Privacy
Rule and HIPAA Security Rule. The Privacy Rule defines what organizations are
covered, what information is protected and rules for permitted use and disclosure. The
rule also sets limitations on how personal medical information can be used and defines
penalties for violations, from $100 to $50,000 per violations. HIPAA also imposes
criminal penalties for knowingly obtaining protected information - up to one year in
prison.

The Security Rule sets requirements for the protection of PII, including ensuring “the
confidentiality, integrity, and availability of all e-PHI [organizations] create, receive,
maintain or transmit.” The rule also mandates that organizations “Protect against
reasonably anticipated, impermissible uses or disclosures,” and that “covered entities
to perform risk analysis as part of their security management processes.” This risk

§) APlsec

assessment must address any technical mechanisms in which PII can be accessed or
manipulated, and clearly encompasses any APIs that touch PII.

HIPAA goes further than GDPR and CCPA to mandate certain technical controls, albeit
still at a high level. For example, HIPAA requires that “A covered entity must
implement technical policies and procedures that allow only authorized persons to
access electronic protected health information (e-PHI).” Virtually online medical
record systems leverage APIs, especially when sharing information across
organizations - these APIs must be highly secured and validated to ensure no
unauthorized access is possible.

Privacy Implications for APIs

Across all these privacy regulations we see a focus on the objective of protecting
personal information, while leaving out specifics on how to protect this data. CCPA
specifies that organizations must have “reasonable security,” whereas GDPR requires
“appropriate security” measures be put in place. No specific direction is provided to
dictate how organizations must secure this sensitive information.

This puts the responsibility on organizations to perform a thorough risk assessment,
understand the mechanisms available to access PII, and implement appropriate tests
and controls to ensure the data is kept secure. Suppose APIs are being used to access
and transmit personal information. In that case, these APIs need to be part of risk
assessments, and organizations must determine what controls are appropriate, and
explain how risks and vulnerabilities will be identified and addressed. Consent is also
required because if data is being moved around in ways that you’re not fully aware of
via APIs, then you don’t have the appropriate consent for that movement. While
technical controls, such as authentication, authorization and monitoring are needed, it
is also critical to perform regular and comprehensive security tests to uncover any gaps
in controls and unintended logic faults that can give a hacker access to protected
information.

§) APlsec

Compliance

Security regulations have existed now for decades, with the introduction of HIPAA in
healthcare, PCI in credit cards, GLBA in banking, NERC in energy, and many more.
These regulations emerged to address cybersecurity threats and establish minimum
levels of security to ensure smooth, reliable and trustworthy operations within various
industries. These regulations have long addressed the risk of breach to applications
and infrastructure that can lead to service disruption, data theft, and other exploits.

As APIs have become pervasive across all these sectors, and more, they fall directly
under these regulatory regimes and organizations must factor in APIs into their
compliance plans. APIs are often made available publicly, providing an easy attack
vector that allows access to sensitive customer information and internal data.

Below we explore compliance requirements across multiple industries - however, this
is not meant to be an exhaustive list. The key point is API security is absolutely
relevant to any cybersecurity regulation that mandates the protection of data and
applications.

PCI DSS

The Payment Card Industry Data Security Standard (PCI DSS) was created to ensure
secure and trusted electronic payments and transactions. The regulation is much more
explicit than the privacy regulations about what capabilities are mandated for payment
processors. PCI DSS is comprised of 12 requirements covering everything from the use
of firewalls to performing regular vulnerability scans to implementing access controls.

The following specific sections of the PCI DSS directly apply to APIs. Like any web,
mobile, or internal application, APIs are subject to vulnerabilities and these must be
discovered and remediated as early as possible, before code is pushed to production.

§) APlsec

e Section 6.1: Establish a process to identify security vulnerabilities

e Section 6.3: Develop software applications based on industry best practices
and incorporate information security throughout the software development life
cycle

e Section 6.5: Develop all Web applications based on secure coding guidelines
and review custom application code to identify coding vulnerabilities

e Section 6.6: For public-facing web applications, address new threats and
vulnerabilities on an ongoing basis and ensure these applications are protected
against known attacks

e Section 11.3: Perform external and internal penetration testing at least once a
year and after any significant application upgrade or modification, including
application-layer penetration tests

The PCI DSS is very explicit about the need to test applications to find any
vulnerabilities, including after any application modifications. This is especially
important for APIs as this organizations commonly push updates monthly, weekly and
even daily. While a full manual penetration test is generally impractical, new API
testing solutions exist that can automate this and provide continuous API security
assessment.

FedRAMP

The US Federal government created the Federal Risk and Authorization Management
Program (FedRAMP) to provide a standardized approach to certifying cloud-based
services for use in the US Government. Security is at the core of FEdRAMP, which
provides very explicit and detailed security requirements for any Cloud Service
Provider (CSP) to be authorized for government use. These requirements encompass
topics including continuous monitoring, security controls

The FedRAMP Program Management Office (PMO) issued a set of guidelines
specifically to address the need to search for and uncover any vulnerabilities in
applications and infrastructure. The regulation mandates that “CSPs must scan web
applications monthly” and goes on to clarify that scans must cover “All web interfaces

http://www.apisec.ai
http://www.apisec.ai
https://www.fedramp.gov/assets/resources/documents/CSP_Vulnerability_Scanning_Requirements.pdf

§) APlsec

and services.” This language specifically includes all forms of web-facing interface,
including application programming interfaces.

Open Banking

The European Union enacted in 2016 the Payment Services Directive (PSD2) to enable
more seamless financial interoperability across institutions. PSD2 led to the creation of
an Open Banking standard for all institutions to support. At the core of Open Banking is
a set of Banking APIs, developed to standardize the movement of funds, transactions
and information between organizations.

APIs form the backbone of Open Banking and their security is absolutely critical. As
seen in many publicized breaches, APIs often contain loopholes, excess permissions
and logic flaws that can lead to significant breaches. The PSD2 specifically
recommends financial institutions adopt the ISO 27001 cybersecurity framework to
address security needs.

Open Banking presents a unique challenge to covered institutions - on one hand
mandating the use of APIs and requiring 3rd party interoperability, and on the other
insisting that all transfers and transactions are kept absolutely secure and private.

Healthcare Interoperability

The Centers for Medicaid and Medicare Services (CMS) has set out to improve the
access to health information for patients and providers, and to enable digital
interoperability to streamline data exchange. CMS created the Interoperability and

Patient Access Rule to set requirements and standards for the secure and efficient
sharing of health information. At the core of the Interoperability Rule is a suite of
defined APIs leveraging the Health Level 7 (HL7) Fast Healthcare Interoperability
Resources (FHIR). The Interoperability mandate became effective January 1, 2021.

As with the Open Banking requirements, healthcare providers are faced with dueling
mandates - to ensure patient privacy and data protection (HIPAA) and to enable

https://www.cms.gov/Regulations-and-Guidance/Guidance/Interoperability/index
https://www.cms.gov/Regulations-and-Guidance/Guidance/Interoperability/index
https://www.cms.gov/Regulations-and-Guidance/Guidance/Interoperability/index#FHIR
https://www.cms.gov/Regulations-and-Guidance/Guidance/Interoperability/index#FHIR

§) APlsec

seamless, electronic data access across organizations (CMS Interoperability). To
satisfy these competing requirements healthcare organizations must employ APIs and
ensure that those APIs are highly secure. Again, the regulation does not specify how to
achieve security, relying on industry best practices and standard frameworks to provide
this direction. But with APIs at the center of the Interoperability guideline,
organizations must test all APIs, continuously, and with complete coverage to ensure
no logic flaws or security vulnerabilities can be exploited to access PII.

Compliance Implications for APIs

As we see here, cybersecurity regulations exist in virtually every major industry, and
generally share the same core objectives to ensure the reliable, secure, and trusted
operation of critical services. These regulations differ significantly in how prescriptive
they are in specifying how covered organizations must achieve the objective. PCI and
FedRAMP are very clear about what types of capabilities, controls, and mechanisms,
including the need to focus on discovery of vulnerabilities at the application and API
level.

Other regulations, such as the Open Banking and CMS Interoperability Rule, leave it to
each regulated organization to figure out how best to comply. But even here the
expectation is that companies will follow industry best practices, employ standard
security frameworks like SOC 2 and ISO 27001, and perform a comprehensive risk
assessment. Wherever APIs exist, auditors will be looking for appropriate controls and
measures.

§) APlsec

Approaches to API Security

The OWASP organization recognized the fundamental differences in security risk for
APIs versus web and mobile apps. Similarly, the widely used tools and techniques used
to secure web and mobile apps do not offer the same protection for APIs. New
approaches are required for securing APIs - these approaches generally fall into three

categories:
Development Testing/Staging
Static Code Security Application
Analysis Testing Firewall

1. Static Code Analysis: building secure APIs during development
2. Security Testing: security and vulnerability testing
3. Application Firewall: protecting live APIs with inline/traffic solutions

Building security testing into a company’s CI/CD pipeline is a common first line of
defense. This approach focuses on the code itself, adding Static Analysis Security
Testing (SAST) and other code quality solutions to the continuous integration workflow.
There are well established vendors in this segment, and SAST can help enormously
with ensuring the quality and maintainability of a codebase and to identify common,
well-known coding issues and vulnerabilities. However, static code analysis is
incapable of identifying the types of logic flaws that lead to major API breaches and
data loss.

Operations often deploy a second line of defense by deploying Web Application
Firewalls (WAF) and API-aware traffic inspectors to the production API environments.
These firewalls analyze network traffic and employ heuristic techniques to watch for
common attack patterns. API-aware firewalls can go a step further, looking for
API-specific anomalies, such as preventing strings from being passed to an API that
should only receive integers. This is a capability that would be useful across all APIs.

Best Practices for API Compliance & Privacy 10

§) APlsec

However, such technologies would not generally be able to identify an API user that is
attempting to access data belonging to another user. This requires a level of user
visibility and session awareness that API-aware firewalls lack, despite attribution
techniques including IP addresses, packet headers, behavioral patterns, and
user-agents that are employed in web application firewalls.

The primary issues with code analysis and API firewalling is that these technologies
focus primarily on classic security-oriented vulnerabilities such as SQL injection
attacks, cross-site scripting, buffer overflows, etc. As we saw earlier, these are not the
causes of the vast majority of API breaches - these breaches are a result of the
business logic flaws that are unique to each API and cannot be detected or prevented
with standard approaches.

Lastly, companies invest in manual penetration testing by security professionals or
internal Red Teams. Pen-testing relies on humans to understand API code, craft tests
to identify vulnerabilities, execute the tests, and then interpret the results. This manual
approach is, by definition, slow (weeks, not minutes), reactive (often a once or twice a
year effort), and costly. Security vulnerabilities are only discovered after they have
reached production. Despite these drawbacks, manual pen testing approaches security
from the mindset of an adversarial attacker, adding depth in defending against security
attacks.

Meanwhile, organizations continue to operate at the speed of DevOps, with new code
pushed to production every day. As a result, defects make it into production, creating
vulnerabilities and leading to serious breaches as described earlier.

Challenges of API Security Testing

With the move towards API-driven applications and functionality, the challenge of
security testing code gets even harder. There are three main issues: coverage, scale,
and speed.

§) APlsec

Coverage

The ultimate goal of security testing is to make code less vulnerable to attack, misuse
and exploits. To achieve this testing must cover every corner of the API’s capabilities,
not just what is expected. Corey Ball, author of the upcoming book “Hacking APIs”
puts it succinctly, “You can design an API you think is ultra-secure, but if you don’t test
it, then a cybercriminal somewhere is going to do it for you.” So the testing scheme
needs to look at every API endpoint and method, and consider all the possible ways
your API can be used, not just the likely ways.

Scale

The coverage problem leads to the scale problem. How do you create test scenarios to
cover the entire range of API functionality. Consider a relatively lightweight API with,
say, 50 endpoints. Each of those endpoints can support multiple POST, GET, PUT and
DELETE methods. Quickly you’re already up to ~250 endpoint-method permutations.
And then consider the myriad API breach categories as described by the OWASP API
Security Top 10 - pushing testing requirements to thousands of unique attacks. Testing
needs to cover all these permutations and scenarios, otherwise vulnerabilities will
make it to production waiting to get discovered by someone else.

Speed

Speed in CI/CD time means seconds or minutes. When fixes and new functionality
need to move to production, testing cannot delay progress. However, given the
complexity of APIs, the breadth of scenarios to cover, testing speed is more often
measured in weeks or months.

§) APlsec

A Better Way:
Automated API Security Testing

The coverage problem is multiplied by the scale problem - how to create test scenarios
to cover the entire range of API functionality. Consider a relatively lightweight API with,
say, 50 endpoints. Each of those endpoints can support multiple POST, GET, PUT and
DELETE methods. Quickly you’re already up to 200+ endpoint-method permutations.
And then consider the myriad API breach categories

The APIsec approach to API security begins with learning the API: cataloging all
available endpoints and identifying supported methods. This approach is 100%
automated and allows critical API vulnerabilities to be addressed before a company’s
product reaches Production. This allows approach offers major advantages to static
code analysis, API firewalling, and manual pen testing:

1. Critical Vulnerability Detection - discovers vulnerabilities missed by static
analysis and firewalls, including business logic faults and access control issues.

2. Automatic Test Creation - automatically creates thousands of test sequences
with no manual effort. This frees a team from the necessity of dreaming up every
possible test scenario and hand crafting tests, potentially saving thousands of
hours of effort.

3. Complete API Coverage — creates granular tests to cover a company’s entire
API footprint, addressing all API attack breach categories. It covers all of the
nooks, crannies, edge cases, and corners that are easy to miss with manual
efforts.

4. Speed of DevSecOps — enables API testing on every nightly build or release,
without adding any delay. Testing is fast, running in minutes rather than adding
hours or days to a company’s integration and deployment workflow.

https://www.apisec.ai/

§) APlsec

5. Continuous Security — provides continuous API protection, unlike manual
pen-testing that is run monthly or at longer intervals.

6. Cost efficiency — provides far greater test coverage of manual pen-testing at
much lower cost, leveraging the efficiencies inherent in a scalable and
automated process.

After completing the vulnerability analysis, APIsec integrates results into the CI/CD
pipeline, creates trouble tickets in popular systems like Github and Jira, produces
pen-test reports suitable for submission to regulatory auditors and compliance
officers, and provides an easy-to-use dashboard for visualizing and managing changes
to an API over time. The dashboard allows replaying the attack to show the exact
nature of the vulnerability, and automatically calculates Common Vulnerability Scoring
System (CVSS) severity scores.

Please visit www.apisec.ai to learn more.

Dan Barahona, Head of Business Development

Email: dan@apisec.al

http://www.apisec.ai
mailto:dan@apisec.ai

